Error Bounds for Gauss-Chebyshev Quadrature*

By Franz Stetter

1. Introduction. For the error $E(f)$ of the numerical quadrature

$$
E(f)=\int_{a}^{b} f(x) d x-\sum_{k=1}^{N} a_{k} f\left(x_{k}\right),
$$

Davis [1] was the first to give bounds of the kind $\sigma\|f\|$ which do not involve derivatives of the function f, but f is assumed to be analytic in a region containing the interval $[a, b]$. Since then such estimates have been developed in various directions, e.g., different norms of f, influence of the interval length, or optimal choice of the coefficients a_{k} and x_{k}.

In this paper, we show that similar bounds can also be derived for quadrature rules based on suitable weight functions $w(x)$. We especially consider Gaussian rules with the weight $w(x)=\left(1-x^{2}\right)^{-1 / 2}$ over the interval $[-1,1]$:

$$
\begin{equation*}
R(f)=\int_{-1}^{1} \frac{f(x)}{\left(1-x^{2}\right)^{1 / 2}} d x-\frac{\pi}{N} \sum_{\nu=1}^{N} f\left(\cos \left(\frac{2 \nu-1}{2 N} \pi\right)\right) . \tag{1.1}
\end{equation*}
$$

In this connection we also refer to Stenger [4] who gives general error developments.
2. Bounds. Let f be analytic in $|z| \leqq r, r>1$. Applying the linear and continuous operator R to the Cauchy integral of f

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi i} \int_{|z|=r} \frac{f(z)}{z-x} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(r e^{i \phi}\right)}{1-x r^{-1} e^{-i \phi}} d \phi \tag{2.1}
\end{equation*}
$$

we therefore immediately get by means of the Cauchy-Schwarz inequality:
where σ^{2} depends on N and r. (r is to be chosen so that $\sigma^{2}\|f\|^{2}$ is minimal.) Now $R\left(x^{n}\right)=0$ for $n=0,1, \cdots, 2 N-1$ (the rule (1.1) is exact for polynomials of degree less than $2 N)$ and $R\left(x^{2 n+1}\right)=0$ for $n=0,1, \cdots((1.1)$ is symmetric $)$. From

$$
\begin{equation*}
\int_{-1}^{1} \frac{x^{2 n}}{\left(1-x^{2}\right)^{1 / 2}} d x=\pi \frac{1 \cdot 3 \cdots(2 n-1)}{2 \cdot 4 \cdots(2 n)}=\pi \frac{(2 n-1)!!}{(2 n)!!}, \tag{2.3}
\end{equation*}
$$

we obtain the expression

$$
\begin{equation*}
\sigma^{2}=\frac{\pi}{2} \sum_{n=N}^{\infty}\left(\frac{(2 n-1)!!}{(2 n)!!}-\frac{1}{N} \sum_{\nu=1}^{N} \cos ^{2 n}\left(\frac{2 \nu-1}{2 N} \pi\right)\right)^{2} r^{-4 n} \tag{2.4}
\end{equation*}
$$

(a) Case $N=1$. Since $\cos \pi / 2=0$ we get

[^0]\[

$$
\begin{equation*}
\sigma^{2}=\frac{\pi}{2} \sum_{n=1}^{\infty}\left(\frac{(2 n-1)!!}{(2 n)!!}\right)^{2} r^{-4 n}<\frac{\pi}{8} \frac{1}{r^{4}-1} \tag{2.5}
\end{equation*}
$$

\]

and hence,

$$
\begin{equation*}
|R(f)| \leqq \frac{1}{2}\left(\frac{\pi}{2\left(r^{4}-1\right)}\right)^{1 / 2}\|f\| \tag{2.6}
\end{equation*}
$$

(b) Case $N=2$. Now

$$
\begin{equation*}
\sigma^{2}=\frac{\pi}{2} \sum_{n=2}^{\infty}\left(\frac{(2 n-1)!!}{(2 n)!!}-\frac{1}{2^{n}}\right)^{2} r^{-4 n} \tag{2.7}
\end{equation*}
$$

From

$$
\operatorname{Max}_{n}\left(\frac{(2 n-1)!!}{(2 n)!!}-\frac{1}{2^{n}}\right)^{2}=\left(\frac{55}{256}\right)^{2}
$$

it follows that

$$
\begin{equation*}
|R(f)| \leqq \frac{55}{256 r^{2}}\left(\frac{\pi}{2\left(r^{4}-1\right)}\right)^{1 / 2}\|f\| \tag{2.8}
\end{equation*}
$$

(c) Case $N=3 . \mid R\left(x^{2 n}\right)^{\mid}$assumes its maximum for $n=12$; the value is

$$
0.14006 \cdots<1 / 7
$$

Hence

$$
\begin{equation*}
|R(f)|<\frac{1}{7 r^{4}}\left(\frac{\pi}{2\left(r^{4}-1\right)}\right)^{1 / 2}\|f\| \tag{2.9}
\end{equation*}
$$

(d) Case $N \geqq 4$.

In the theory of numerical integration, it is shown that the error $R(f)$ can be expressed by $R(f)=a f^{(2 N)}(\xi)$ where $a>0$ and $-1 \leqq \xi \leqq 1$; hence (for $n \geqq N$),

$$
\begin{aligned}
0 \leqq R\left(x^{2 n}\right) & =\pi\left(\frac{(2 n-1)!!}{(2 n)!!}-\frac{1}{N} \sum_{\nu=1}^{N} \cos ^{2 n}\left(\frac{2 \nu-1}{2 N} \pi\right)\right) \\
& \leqq \pi \frac{(2 n-1)!!}{(2 n)!!} \leqq \pi \frac{(2 N-1)!!}{(2 N)!!}
\end{aligned}
$$

Thus, we get the general estimate

$$
\begin{equation*}
|R(f)| \leqq \frac{(2 N-1)!!}{(2 N)!!r^{2 N-2}}\left(\frac{\pi}{2\left(r^{4}-1\right)}\right)^{1 / 2}\|f\| \tag{2.10}
\end{equation*}
$$

The bound (2.10) is also valid for $N=1,2,3$. Using Stirling's formula for n !, we get from (2.10)

$$
\begin{equation*}
|R(f)| \leqq \frac{1.05}{r^{2 N-2}(2 N)^{1 / 2}}\left(\frac{1}{r^{4}-1}\right)^{1 / 2}\|f\| \tag{2.11}
\end{equation*}
$$

for every $N \geqq 1$.
3. Example. Let $f(x)=x^{6}$. Then the two-point rule $(N=2)$ has the bound

$$
|R(f)| \leqq \frac{55}{256} \frac{\pi r^{4}}{\left(r^{4}-1\right)^{1 / 2}}
$$

which is minimum when $r^{4}=2$. Thus, $|R(f)| \leqq 55 \pi / 128$. The exact error is $3 \pi / 16$.
4. Remarks. Similar results can be derived by using, instead of the norm used in this paper, polynomials orthogonal over the region $|z|<r$ or orthogonal over (or on) the ellipse whose foci are ± 1. For details we refer to Davis [2].

As mentioned by Hämmerlin [3] and Stenger [4], the norm $\|f\|$ can be replaced by $\left\|f-P_{2 N-1}\right\|$ where $P_{2 N-1}$ is a polynomial of degree $2 N-1$.

Applied Mathematics Division
Argonne National Laboratory
Argonne, Illinois 60439

1. P. Davis, "Errors of numerical approximation for analytic functions," J. Rational Mech. Anal., v. 2, 1953, pp. 303-313. MR 14, 907.
2. P. Davis, Interpolation and Approximation, Blaisdell, New York, 1963. MR 28 \#393.
3. G. HÄMMERLIN, "Über ableitungsfreie Schranken für Quadraturfehler. II: Ergänzungen und Möglichkeiten zur Verbesserung," Numer. Math., v. 7, 1965, pp, 232-237. MR 32 \#1899.
4. F. Stenger, "Bounds on the error of Gauss-type quadratures," Numer. Math., v. 8, 1966, pp. 150-160. MR 33 \#5120.

[^0]: Received September 13, 1967.

 * Work performed under the auspices of the United States Atomic Energy Commission.

