TECHNICAL NOTES AND SHORT PAPERS

Error Bounds for Gauss-Chebyshev Quadrature*

By Franz Stetter

1. Introduction. For the error E(f) of the numerical quadrature

$$E(f) = \int_a^b f(x)dx - \sum_{k=1}^N a_k f(x_k) ,$$

Davis [1] was the first to give bounds of the kind $\sigma ||f||$ which do not involve derivatives of the function f, but f is assumed to be analytic in a region containing the interval [a, b]. Since then such estimates have been developed in various directions, e.g., different norms of f, influence of the interval length, or optimal choice of the coefficients a_k and x_k .

In this paper, we show that similar bounds can also be derived for quadrature rules based on suitable weight functions w(x). We especially consider Gaussian rules with the weight $w(x) = (1 - x^2)^{-1/2}$ over the interval [-1, 1]:

(1.1)
$$R(f) = \int_{-1}^{1} \frac{f(x)}{(1-x^2)^{1/2}} dx - \frac{\pi}{N} \sum_{\nu=1}^{N} f\left(\cos\left(\frac{2\nu-1}{2N}\pi\right)\right).$$

In this connection we also refer to Stenger [4] who gives general error developments.

2. Bounds. Let f be analytic in $|z| \leq r$, r > 1. Applying the linear and continuous operator R to the Cauchy integral of f

(2.1)
$$f(x) = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z-x} dz = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(re^{i\phi})}{1-xr^{-1}e^{-i\phi}} d\phi$$

we therefore immediately get by means of the Cauchy-Schwarz inequality:

(2.2)
$$|R_{\cdot}(f)|^{2} \leq \left\{ \frac{1}{2\pi} \sum_{n=0}^{\infty} \frac{|R(x^{n})|^{2}}{r^{2n}} \right\} \left\{ \int_{0}^{2\pi} |f(re^{i\phi})|^{2} d\phi \right\} = a^{2} ||f||^{2},$$

where σ^2 depends on N and r. (r is to be chosen so that $\sigma^2 ||f||^2$ is minimal.) Now $R(x^n) = 0$ for $n = 0, 1, \dots, 2N - 1$ (the rule (1.1) is exact for polynomials of degree less than 2N) and $R(x^{2n+1}) = 0$ for $n = 0, 1, \dots$ ((1.1) is symmetric). From

(2.3)
$$\int_{-1}^{1} \frac{x^{2n}}{(1-x^2)^{1/2}} dx = \pi \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)} = \pi \frac{(2n-1)!!}{(2n)!!},$$

we obtain the expression

(2.4)
$$\sigma^{2} = \frac{\pi}{2} \sum_{n=N}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} - \frac{1}{N} \sum_{\nu=1}^{N} \cos^{2n} \left(\frac{2\nu-1}{2N} \pi \right) \right)^{2} r^{-4n}.$$

(a) Case N = 1. Since $\cos \pi/2 = 0$ we get

Received September 13, 1967.

^{*} Work performed under the auspices of the United States Atomic Energy Commission.

(2.5)
$$\sigma^{2} = \frac{\pi}{2} \sum_{n=1}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} \right)^{2} r^{-4n} < \frac{\pi}{8} \frac{1}{r^{4}-1},$$

and hence,

(2.6)
$$|R(f)| \leq \frac{1}{2} \left(\frac{\pi}{2(r^4 - 1)}\right)^{1/2} ||f||$$

(b) Case N = 2. Now

(2.7)
$$\sigma^{2} = \frac{\pi}{2} \sum_{n=2}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} - \frac{1}{2^{n}} \right)^{2} r^{-4n}$$

From

$$\max_{n} \left(\frac{(2n-1)!!}{(2n)!!} - \frac{1}{2^{n}} \right)^{2} = \left(\frac{55}{256} \right)^{2}$$

it follows that

(2.8)
$$|R(f)| \leq \frac{55}{256r^2} \left(\frac{\pi}{2(r^4-1)}\right)^{1/2} ||f||.$$

(c) Case N = 3. $|R(x^{2n})|$ assumes its maximum for n = 12; the value is

 $0.14006 \cdots < 1/7$.

Hence

(2.9)
$$|R(f)| < \frac{1}{7r^4} \left(\frac{\pi}{2(r^4-1)}\right)^{1/2} ||f||.$$

(d) Case $N \geq 4$.

In the theory of numerical integration, it is shown that the error R(f) can be expressed by $R(f) = af^{(2N)}(\xi)$ where a > 0 and $-1 \leq \xi \leq 1$; hence (for $n \geq N$),

$$0 \leq R(x^{2n}) = \pi \left(\frac{(2n-1)!!}{(2n)!!} - \frac{1}{N} \sum_{\nu=1}^{N} \cos^{2n} \left(\frac{2\nu - 1}{2N} \pi \right) \right)$$
$$\leq \pi \frac{(2n-1)!!}{(2n)!!} \leq \pi \frac{(2N-1)!!}{(2N)!!}.$$

Thus, we get the general estimate

(2.10)
$$|R(f)| \leq \frac{(2N-1)!!}{(2N)!!r^{2N-2}} \left(\frac{\pi}{2(r^4-1)}\right)^{1/2} ||f||.$$

The bound (2.10) is also valid for N = 1, 2, 3. Using Stirling's formula for n!, we get from (2.10)

(2.11)
$$|R(f)| \leq \frac{1.05}{r^{2N-2}(2N)^{1/2}} \left(\frac{1}{r^4 - 1}\right)^{1/2} ||f||$$

for every $N \ge 1$.

658

3. Example. Let $f(x) = x^6$. Then the two-point rule (N = 2) has the bound

$$|R(f)| \leq \frac{55}{256} \frac{\pi r^4}{(r^4 - 1)^{1/2}}$$

which is minimum when $r^4 = 2$. Thus, $|R(f)| \leq 55\pi/128$. The exact error is $3\pi/16$.

4. Remarks. Similar results can be derived by using, instead of the norm used in this paper, polynomials orthogonal over the region |z| < r or orthogonal over (or on) the ellipse whose foci are ± 1 . For details we refer to Davis [2].

As mentioned by Hämmerlin [3] and Stenger [4], the norm ||f|| can be replaced by $||f - P_{2N-1}||$ where P_{2N-1} is a polynomial of degree 2N - 1.

Applied Mathematics Division Argonne National Laboratory Argonne, Illinois 60439

1. P. DAVIS, "Errors of numerical approximation for analytic functions," J. Rational Mech.

Anal., v. 2, 1953, pp. 303-313. MR 14, 907.
2. P. DAVIS, Interpolation and Approximation, Blaisdell, New York, 1963. MR 28 #393.
3. G. HÄMMERLIN, "Über ableitungsfreie Schranken für Quadraturfehler. II: Ergänzungen und Möglichkeiten zur Verbesserung," Numer. Math., v. 7, 1965, pp. 232-237. MR 32 #1899.
4. F. STENGER, "Bounds on the error of Gauss-type quadratures," Numer. Math., v. 8, 1966, 1000 pp. 150-160. MR 33 #5120.